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AbstrAct 

Advances in immunotherapy for osteosarcoma have shown promising results, with the use of mono-

clonal antibodies and immune checkpoint inhibitors. These strategies are aimed at targeting specific 

molecules and pathways involved in tumour immune evasion and promoting anti-tumour immune 

responses. Other emerging immunotherapeutic approaches include autophagy and pyroptosis induc-

tion, chimeric antigen receptor T-cell therapy, gadolinium-bisphosphonate nanoparticles and dendritic 

cell-based vaccines. Continued research into these emerging treatment strategies is essential for devel-

oping effective therapies for patients with high-grade osteosarcoma. 
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IntroductIon

Osteosarcoma, a  malignant mesenchymal cell-derived tumour 

that produces osteoid [1–3], is a rare yet catastrophic disease and 

the most frequent primary bone tumour, ranking third among 

children and adolescents cancers, after lymphomas and brain tu-

mours [1, 4, 5].

Despite the implementation of adjuvant chemotherapy in the 

1970s that yielded higher overall 10-year survival rates, survival 

rates have not improved since the 1990s. The contemporary treat-

ment approach for extremity localized, non-metastatic osteosar-

coma involves a combination of surgery and high-dose chemo-

therapy, resulting in a 5-year event-free survival rate of 60–70%. 

However, a significant challenge remains in the form of low sur-

vival rates for patients with metastases or relapse, as well as those 

with axial disease [2]. Consequently, there is an urgent need for 

a better comprehension of this ailment, including improved diag-

nostic techniques and treatment modalities [1].

This review article aims to provide an in-depth overview of oste-

osarcoma, covering its etiology, clinical presentation, diagnostic 

tools, and management options. Subsequently, we investigate 

the potential of novel treatment approaches to improve the prog-

nosis of high-grade osteosarcoma.

osteosArcomA

Osteosarcoma, is a type of bone cancer that arises from primitive 

transformed cells of mesenchymal origin, exhibiting osteoblastic 

differentiation, and producing malignant osteoid or immature 

bone [2, 6]. It is the most common histological form of primary 

bone sarcoma and is most prevalent in children and young adults 

[7]. The second peak of osteosarcoma occurrence is in individ-

uals over 65 years of age [8]. Several factors increase the risk of 

osteosarcoma, including familial cases (Li Fraumeni syndrome, 

retinoblastoma syndrome, Werner syndrome, Bloom syndrome 

or Diamond-Blackfan anemia) [9–11], bone dysplasias, radiation 

exposure [12], large doses of strontium-90 [13], and exposure to 

environmental chemicals such as radium, beryllium, and chromi-

um [14–16]. There is no clear association between water fluorida-

tion and osteosarcoma [17].

The majority of osteosarcoma cases occur in the femur (42%), fol-

lowed by the tibia (19%), humerus (10%), skull or jaw (8%), and 

pelvis (8%). In children, osteosarcoma frequently occurs in the 

metaphysis of long bones [5]. Upon presentation, around 10–20% 

of patients exhibit observable macrometastatic disease, with the 

lungs being the most common site of metastasis [18].

Patients with osteosarcoma often first complain of pain that may 

be worse at night, intermittent, and of varying intensity, or may 

present as overt localized swelling and a  large soft tissue mass. 

The lymphadenopathy may also be present. A relatively common 

initial manifestation of osteosarcoma is a pathologic fracture.

Osteosarcoma is typically diagnosed using plain radiograph as 

the initial imaging modality. Some features of osteosarcoma visi-

ble on plain radiograph include the radial “sunburst” appearance 

and “Codman triangle”, which is a result of the tumour elevating 

the periosteum [19]. If there are subtle abnormalities or if the 

plain radiographs are inconclusive, magnetic resonance imaging 

(MRI) should be performed in patients with a  high suspicion of 

disease. The MRI protocol should include a coronal T1-weighted 

sequence. Both computed tomography (CT) and MRI are accurate 

in the local staging of osteosarcoma [20], but MRI is superior in 

defining the extent of soft tissue involvement [21, 22]. A definite 

diagnosis of osteosarcoma requires a biopsy of the tumour  tissue 

and subsequent pathological examination [23, 24].

Treatment

Curative therapy for osteosarcoma always involves surgery and 

the location and size of the primary tumour determine the type of 

surgical procedure needed [25, 26]. The goal is to achieve a neg-

ative margin of resection with a wide local excision that removes 

the primary tumour along with its reactive zone and a cuff of nor-

mal tissue in all planes. Limb-sparing procedures are preferred 

for extremity lesions to improve functional outcomes as long as 

complete tumour resection is anatomically possible and adjuvant 

chemotherapy is used. However, patient selection is critical, and 

amputation is indicated if there is any doubt that a  wide local 

excision can be accomplished to avoid local recurrence [27–30]. 

Computer-assisted tumour surgery is beginning to be used for 

complex surgical resections, particularly for pelvic or sacral tu-

mours [31].

Adjuvant therapy, including chemotherapy and radiation ther-

apy, is a  crucial component in managing osteosarcoma. Often, 

there is subclinical metastatic disease present at diagnosis, which 

can be eliminated by starting chemotherapy early. Neoadjuvant 

chemotherapy is used to increase the number of patients who 

can undergo limb-salvage surgery by reducing tumour burden. 

The response to neoadjuvant chemotherapy is a critical factor in 

predicting the outcome of treatment [32].

Radiation therapy is usually not effective against osteosarcoma, 

and primary radiation therapy alone is often not enough to con-

trol local disease, especially for large tumours. Adjuvant radiation 
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therapy may be considered only for patients with unresectable 

or incompletely resected primary tumours or for those specific 

variants of osteosarcoma, which may be more responsive to ra-

diation [33–37].

Immune checkpoInts

One of the key mechanisms of malignant tumours is their ability 

to evade the immune response [38–40]. This is achieved through 

the activation of a series of mechanisms that aim to disrupt the 

activation of T lymphocytes, which are a  crucial component of 

the immune response against tumours. The activation of T lym-

phocytes mainly depends on the interaction between the T cell 

receptor (TCR) and antigens presented by the major histocom-

patibility complex (MHC) and the binding of the co-stimulatory 

transmembrane receptor CD28 (Cluster of differentiation 28) ex-

pressed on T cells to its ligand CD80/86 (Cluster of differentiation 

80/86) [41, 42].

These activation mechanisms can be disrupted by immune 

checkpoints such as programmed cell death protein-1 (PD-1) 

and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4). PD-1 

achieves this effect by binding to programmed cell death protein 

ligand-1 (PD-L1), while CTLA-4 inhibits immune system activa-

tion by binding to CD80/86 [41, 43–47]. PD-1/PD-L1 and CTLA-4/

CD80/86 checkpoints are utilized by tumours to evade the im-

mune response [38–40, 48, 49].

Other immune checkpoints, such as T-cell immunoglobulin mucin 

domain-containing protein-3 (Tim-3) [50], indoleamine 2,3-dioxy- 

genase-1 (IDO1) [51], and lymphocyte activation gene-3 (Lag-3) 

[52], can also hinder the immune response [47].

Immune checkpoint inhibitors

Immune checkpoint inhibitors (ICI) targeting PD-1, PD-L1 and 

CTLA4 are used in treatment of several cancers such as melano-

ma, lung cancer, renal cell carcinoma, Hodgkin lymphoma, cuta-

neous squamous cell carcinoma, and urothelial carcinoma [53]. 

The discovery of ICIs, such as ipilimumab and nivolumab, has had 

a particularly significant impact on the treatment of melanoma. 

Immune checkpoint inhibitors are now frequently used in the 

treatment of advanced melanoma, and their efficacy is contin-

uously being investigated in clinical trials [54–59]. Figure 1 illus-

trates the binding sites and mechanism of action of checkpoint 

inhibitors.

The use of ICIs as mono- or dual therapy in osteosarcoma has not 

resulted in significant anti-tumour efficacy [47, 60–66]. Potential 

reasons for this could be attributed to various barriers such as low 

expression of PD-L1 [67–69], insufficient tumour-specific antigen 

presentation [70, 71], limited immune cell infiltration [72–74], and 

specific extracellular matrix [75–87].

Nevertheless, several preclinical studies and a  few clinical trials 

have demonstrated the anti-tumour potential of combining im-

mune checkpoint inhibitors with several novel strategies. Addi-

tionally, recent research has proposed predictive biomarkers of 

ICIs for osteosarcoma that could aid in the selection of patients 

who are more likely to benefit from this treatment [47].

Combining immune checkpoint inhibitors with autophagy 

induction

Autophagy is a process of self-degradation that plays a crucial role 

in maintaining energy balance during crucial developmental stag-

es and in response to nutrient deficiencies. Additionally, it serves 

a housekeeping function by eliminating misfolded or aggregat-

ed proteins, clearing out damaged organelles like mitochondria, 

endoplasmic reticulum, and peroxisomes, and getting rid of in-

tracellular pathogens [88]. Recently, augmenting anti-tumour 

immunotherapy through the use of autophagy has emerged as 

a  promising approach [89–93]. Autophagy, in response to both 

intracellular and extracellular stressors, can improve antigen 

presentation and increase the sensitivity of cytotoxic T lympho-

cytes [94–98].

To utilize the mechanisms of autophagy and immune check-

points in anticancer therapy, Ge et al. [89] designed a pH-sensi-

tive nanocarrier that released the natural derivative of curcumin 

and the BMS1166 in the acidic environment of the osteosarco-

ma. The curcumin derivative activated the autophagic cell death 

and enhanced the immunotherapeutic response of PD-1/PD-L1 

blockade. The BMS1166 simultaneously inhibited the PD-1/PD-L1 

interaction, increasing tumour immunogenicity and sensitivity to 

T-cell anti-tumour response.

Administering the nanocarrier to mice with orthotopic osteosar-

coma (OS) demonstrated potent anti-tumour effects, resulting in 

long-term immunity against tumour recurrence. This was accom-

panied by increased dendritic cell maturation and infiltration of 

CD8+ T lymphocytes into the tumour [89].

Combining immune checkpoint inhibitors with pyroptosis 

induction

Pyroptosis is a type of cell death that is initiated by specific inflam-

masomes, which trigger the cleavage of gasdermin D (GSDMD) 

and activation of inactive cytokines such as IL-18 and IL-1β by 
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Figure 1. Schematic representation of the mechanism of action of checkpoint inhibitors. The interaction between T cells and dendritic 

cells occurs in lymph nodes, whereas the interaction between T cells and cancer cells occurs in the tumour tissue.

CD28 – cluster of differentiation 28; B7 – B7 protein; CTLA-4 – cytotoxic T-lymphocyte antigen 4; MHC – major histocompatibility complex; PD-1 – pro-

grammed cell death protein 1; PD-L1 – programmed death-ligand 1; TCR – T-cell receptor; ANTI-CTLA-4 –  antibody directed against CTLA4; ANTI-PD-1 

– antibody directed against PD1; ANTI-PD-L1 –  antibody directed against PD-L1.

caspase-1. This process leads to cellular swelling, lysis of the plas-

ma membrane, fragmentation of chromatin, and release of proin-

flammatory substances [99]. More recently, research has shown 

that pyroptosis may play a  role in regulating the proliferation, 

invasion, and metastasis of tumours, and that this process can be 

controlled by non-coding RNAs and other molecules [99–103].

 

Jin et al. [104] proposed a method in 2022 to induce pyroptosis in 

osteosarcoma cells by selectively modulating the mitochondria, 

which could increase the efficacy of anti-tumour treatment when 

combined with immunotherapy. They developed a polymer mi-

celle made up of poly[2-(N-oxide-N,N-diethylamino)ethyl meth-

acrylate] (OPDEA) and conjugated dichloroacetate (DCA). OPDEA 

was used to target the mitochondria, and DCA was used to block 

pyruvate dehydrogenase kinase 1 (PDHK1). This conjugate was 

found to trigger pyroptosis by inducing oxidative stress in the 

mitochondria of osteosarcoma cell lines. The researchers also 

observed that the micelle could stimulate the release of PD-L1. 
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Therefore, when combined with an anti-PD-L1 monoclonal anti-

body, the micelle was able to effectively inhibit the proliferation 

of osteosarcoma cells and sustain T cell activation. This study sug-

gests that targeted modulation of mitochondria to induce pyrop-

tosis could be an effective strategy to improve the anti-tumour 

efficacy of immunotherapy.

chImerIc AntIgen receptor t cells (cAr-t)

Chimeric antigen receptor T cell (CAR-T) refers to a  T cell with 

a modified receptor designed to improve its ability to target can-

cer cells. This gene therapy involves modifying a patient’s T cells in 

a laboratory to equip them with a chimeric antigen receptor (CAR) 

that allows them to recognize and target cancer cells, after which 

the cells are reintroduced into the patient’s body. CAR-T is used to 

treat certain types of leukaemia and lymphoma, as well as being 

studied for solid tumour therapy [105–107].

In 2019 Wang et al. [108] discovered that the expression of CD166 

was selectively detected on human osteosarcoma cell lines, indi-

cating its potential as a target for CAR-T cell therapy. The CD166.

BBζ CAR-T cells displayed cytotoxicity against osteosarcoma cells 

in vitro and in vivo, and their injection into mice resulted in the 

regression of tumours without any obvious toxicity. The findings 

suggest that CD166.BBζ CAR-T cells may serve as a  promising 

therapeutic strategy for the treatment of osteosarcoma in future 

clinical practice.

cAncer vAccInes

Cancer vaccines belong to the category of immunotherapy, 

which harnesses the body’s own immune system to identify and 

eliminate malignant cells. These vaccines function by introducing 

cancer-associated antigens to the body through various methods 

such as injection or viral/bacterial vectors. The immune system 

then recognizes these antigens as foreign and triggers a response 

to destroy them. The ultimate goal of cancer vaccines is to induce 

a  robust and specific immune response that can prevent the 

growth of new tumours or eradicate existing ones. The available 

types of cancer vaccines include peptide vaccines, DNA vaccines, 

RNA vaccines, and whole-cell vaccines [109]. In cancer vaccines, 

a frequently utilized approach is to employ dendritic cells that are 

sourced from the patient [110]. Antigens linked to the tumour are 

showcased to these cells, which are then infused into the patient. 

The prepared dendritic cells present the antigens to cytotoxic T 

cells, which gain the capability to target and eliminate cancer cells 

in a selective manner [111–113].

gAdolInIum-bIsphosphonAte nAnopArtIcles

Gadolinium is an element commonly used as a contrast agent in 

MRI scans. It has also been shown to reduce the survival of os-

teosarcoma cells in vitro in a concentration-dependent manner 

[114]. Zhang et al. conducted a study in 2022 [115] where they 

created and synthesized nanoparticles using gadolinium and bi-

sphosphonate. The study demonstrated that internalizing these 

nanoparticles into osteosarcoma cells increased the tumour’s 

sensitivity to radiotherapy. Furthermore, the nanoparticles stim-

ulated the activation of both the innate and adaptive immune 

response in the tumour microenvironment, maturation of den-

dritic cells, and M1 polarization of macrophages. These findings 

indicated that the nanoparticles have the potential to improve 

the effectiveness of radiotherapy and immunotherapy in treating 

osteosarcoma [115].

synergIstIc effects of cd47 And gd2 

AntIbodIes

Anti-tumour immunity is mediated, in part, by macrophages that 

eliminate tumour cells through phagocytosis. However, CD47 

(cluster of differentiation 47) is a checkpoint molecule that can in-

hibit macrophage activity by binding to its receptor SIRPα [116]. 

The inhibition of CD47 has shown encouraging clinical effective-

ness in initial human trials [117–119].

Disialoganglioside GD2 is overexpressed in neuroblastoma 

and osteosarcoma, and its expression varies in other tumours 

[120–125]. Unfortunately, anti-GD2 antibodies have not demon-

strated significant anti-tumour activity in osteosarcoma or other 

GD2-positive tumours [126, 127]. On the other hand, the com-

bination of CD47 and GD2 antibodies has been found to have 

a  significant synergistic effect, leading to the recruitment of 

macrophages associated with the tumour that effectively target 

the tumour cells. These findings suggest that the combination of 

CD47 and GD2 antibodies may have potential as a treatment for 

osteosarcoma [117, 128].

conclusIons

In conclusion, osteosarcoma remains a devastating disease that 

poses a significant challenge for patients, their families, and cli-

nicians. Despite significant advances in diagnosis and manage-

ment, survival rates have remained relatively stagnant since the 

1990s.

The emergence of immunotherapy as a potential treatment op-

tion is a  promising development in the field of osteosarcoma 
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management. The use of immune checkpoint inhibitors, adop-

tive T-cell therapy, and vaccines holds great potential for improv-

ing outcomes for patients with osteosarcoma. Future research 

is needed to identify biomarkers to predict response to immu-

notherapy and to develop combinatorial strategies that can 

optimize the use of immunotherapeutic agents. Overall, these 

emerging therapies represent an opportunity to significantly im-

prove the lives of patients with osteosarcoma.
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