Neoantigen therapeutic cancer vaccines: a promising approach to personalized immunotherapy Review article

Main Article Content

Kamil Poboży
Julia Domańska
Paweł Domański

Abstract

The tumour microenvironment diversity among patients poses a challenge for conventional therapies, leading to limited efficacy. Furthermore, conventional methods are inherently associated with a negative impact on healthy tissues. Personalized immunotherapy, focused on individual tumor characteristics, has emerged as a potential solution. Neoantigens, unique antigens arising from tumour-specific mutations, play a crucial role in personalized therapy. Identifying and utilizing neoantigens through therapeutic vaccines can induce an immune response specifically against tumour cells, offering a more targeted and less toxic for healthy tissues approach to cancer treatment. The vaccines can potentially lead to tumour regression and improved outcomes. The effectiveness of this therapy is still limited due to phenomena such as immune escape. However, ongoing scientific research, technological advancements, and emerging combination therapies offer hope for the success of neoantigen-based therapeutic cancer vaccines, ushering in a new era in personalized oncology.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
1.
Poboży K, Domańska J, Domański P. Neoantigen therapeutic cancer vaccines: a promising approach to personalized immunotherapy. OncoReview [Internet]. 2023Sep.18 [cited 2024Jul.18];13(4(52):93-8. Available from: https://www.journalsmededu.pl/index.php/OncoReview/article/view/2821
Section
PERSONALIZED ONCOLOGY

References

1. Krajowy Rejestr Nowotworów. Nowotwory złośliwe w Polsce (access: 23.07.2023).
2. Ma M, Liu J, Jin S et al. Development of tumour peptide vaccines: From universalization to personalization. Scand J Immunol. 2020; 91(6): e12875. http://doi.org/10.1111/sji.12875.
3. Liu Z, Lv J, Dang Q et al. Engineering neoantigen vaccines to improve cancer personalized immunotherapy. Int J Biol Sci. 2022; 18(15): 5607-23. http://doi.org/10.7150/ijbs.76281.
4. Riley RS, June CH, Langer R et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019; 18(3): 175-96. http://doi.org/10.1038/s41573-018-0006-z .
5. Immune Checkpoint Inhibitors: Basics and Challenges. Curr Med Chem. 2019; 26(17): 3009-25. http://doi.org/10.2174/0929867324666170804143706.
6. Abril-Rodriguez G, Ribas A. SnapShot: Immune Checkpoint Inhibitors. Cancer Cell. 2017; 31(6): 848-48.e1. http://doi.org/10.1016/j.ccell.2017.05.010.
7. Depil S, Duchateau P, Grupp SA et al. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020; 19(3): 185-99. http://doi.org/10.1038/s41573-019-0051-2.
8. Ma S, Li X, Wang X et al. Current Progress in CAR-T Cell Therapy for Solid Tumors. Int J Biol Sci. 2019; 15(12): 2548-60. http://doi.org/10.7150/ijbs.34213.
9. Makowska K, Panuciak K, Mastalerczyk A et al. Chimeric antigen receptor T-cell as a significant player in the innovative treatment of hematological cancers. J Educ Health Sport. 2023; 13(3): 134-9. http://doi.org/10.12775/JEHS.2023.13.03.019.
10. Lin MJ, Svensson-Arvelund J, Lubitz GS et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022; 3(8): 911-26. http://doi.org/10.1038/s43018-022-00418-6.
11. Saxena M, van der Burg SH, Melief CJM et al. Therapeutic cancer vaccines. Nat Rev Cancer. 2021; 21(6): 360-78. http://doi.org/10.1038/s41568-021-00346-0.
12. Arneth B. Tumor Microenvironment. Medicina (Kaunas). 2019; 56(1): 15. http://doi.org/10.3390/medicina56010015.
13. Lassen UN, Makaroff LE, Stenzinger A et al. Precision oncology: a clinical and patient perspective. Future Oncol. 2021; 17(30): 3995-4009. http://doi.org/10.2217/fon-2021-0688.
14. Desai A, Reddy NK, Subbiah V. Top advances of the year: Precision oncology. Cancer. 2023; 129(11): 1634-42. http://doi.org/10.1002/cncr.34743.
15. Kakimi K, Karasaki T, Matsushita H et al. Advances in personalized cancer immunotherapy. Breast Cancer. 2017; 24(1): 16-24. http://doi.org/10.1007/s12282-016-0688-1.
16. Peng M, Mo Y, Wang Y et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019; 18(1): 128. http://doi.org/10.1186/s12943-019-1055-6.
17. Salmaninejad A, Ilkhani K, Marzban H et al. Genomic Instability in Cancer: Molecular Mechanisms and Therapeutic Potentials. Curr Pharm Des. 2021; 27(28): 3161-9. http://doi.org/10.2174/1381612827666210426100206.
18. Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science. 2018; 359(6382): 1355-60. http://doi.org/10.1126/science.aar7112.
19. Waisman A, Lukas D, Clausen BE et al. Dendritic cells as gatekeepers of tolerance. Semin Immunopathol. 2017; 39(2): 153-63. http://doi.org/10.1007/s00281-016-0583-z .
20. Ding Z, Li Q, Zhang R et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct Target Ther. 2021; 6(1): 26. http://doi.org/10.1038/s41392-020-00448-5.
21. Sutherland SIM, Ju X, Horvath LG et al. Moving on From Sipuleucel-T: New Dendritic Cell Vaccine Strategies for Prostate Cancer. Front Immunol. 2021; 12: 641307. http://doi.org/10.3389/fimmu.2021.641307.
22. Szeto C, Lobos CA, Nguyen AT et al. TCR Recognition of Peptide-MHC-I: Rule Makers and Breakers. Int J Mol Sci. 2020; 22(1): 68. http://doi.org/10.3390/ijms22010068.
23. Chang HF, Bzeih H, Chitirala P et al. Preparing the lethal hit: interplay between exo- and endocytic pathways in cytotoxic T lymphocytes. Cell Mol Life Sci. 2017; 74(3): 399-408. http://doi.org/10.1007/s00018-016-2350-7.
24. Belizário JE, Brandão W, Rossato C et al. Thymic and Postthymic Regulation of Naïve CD4(+) T-Cell Lineage Fates in Humans and Mice Models. Mediators Inflamm. 2016; 2016: 9523628. http://doi.org/ 10.1155/2016/9523628.
25. Lang F, Schrörs B, Löwer M et al. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov. 2022; 21(4): 261-82. http://doi.org/10.1038/s41573-021-00387-y .
26. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015; 348(6230): 69-74. http://doi.org/10.1126/science.aaa4971.
27. Xiao W, Ren L, Chen Z et al. Toward best practice in cancer mutation detection with whole-genome and whole-exome sequencing. Nat Biotechnol. 2021; 39(9): 1141-50. http://doi.org/10.1038/s41587-021-00994-5.
28. Yang B, Jeang J, Yang A et al. DNA vaccine for cancer immunotherapy. Hum Vaccin Immunother. 2014; 10(11): 3153-64. http://doi.org/10.4161/21645515.2014.980686.
29. Rezaei T, Davoudian E, Khalili S et al. Strategies in DNA vaccine for melanoma cancer. Pigment Cell Melanoma Res. 2021; 34(5): 869-91. http://doi.org/10.1111/pcmr.12933.
30. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021; 20(1): 41. http://doi.org/10.1186/s12943-021-01335-5.
31. Cafri G, Gartner JJ, Zaks T et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest. 2020; 130(11): 5976-88. http://doi.org/10.1172/JCI134915.
32. Machiels JP, van Baren N, Marchand M. Peptide-based cancer vaccines. Semin Oncol. 2002; 29(5): 494-502. http://doi.org/10.1053/sonc.2002.35244.
33. Chandrudu S, Simerska P, Toth I. Chemical methods for peptide and protein production. Molecules. 2013; 18(4): 4373-88. http://doi.org/10.3390/molecules18044373.
34. Aschenbrenner J, Marx A. DNA polymerases and biotechnological applications. Curr Opin Biotechnol. 2017; 48: 187-95. http://doi.org/10.1016/j.copbio.2017.04.005.
35. Carreno BM, Magrini V, Becker-Hapak M et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015; 348(6236): 803-8. http://doi.org/10.1126/science.aaa3828.
36. Sahin U, Derhovanessian E, Miller M et al. Personalized RNA mutanome vaccines mobilize poly specific therapeutic immunity against cancer. Nature. 2017; 547(7662): 222-6. http://doi.org/10.1038/nature23003.
37. Keskin DB, Anandappa AJ, Sun J et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019; 565(7738): 234-9. http://doi.org/10.1038/s41586-018-0792-9.
38. Ott PA, Hu Z, Keskin DB et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017; 547(7662): 217-21. http://doi.org/10.1038/nature22991. Erratum in: Nature. 2018; 555(7696): 402.
39. Hanna MG Jr, Hoover HC Jr, Vermorken JB et al. Adjuvant active specific immunotherapy of stage II and stage III colon cancer with an autologous tumor cell vaccine: first randomized phase III trials show promise. Vaccine. 2001; 19(17-19): 2576-82. http://doi.org/10.1016/s0264-410x(00)00485-0.
40. Melero I, Gaudernack G, Gerritsen W et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014; 11(9): 509-24. http://doi.org/10.1038/nrclinonc.2014.111.
41. Vinay DS, Ryan EP, Pawelec G et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015; 35 Suppl: S185-98. http://doi.org/10.1016/j.semcancer.2015.03.004.
42. Kim CG, Sang YB, Lee JH et al. Combining Cancer Vaccines with Immunotherapy: Establishing a New Immunological Approach. Int J Mol Sci. 2021; 22(15): 8035. http://doi.org/10.3390/ijms22158035.
43. Ali OA, Lewin SA, Dranoff G et al. Vaccines Combined with Immune Checkpoint Antibodies Promote Cytotoxic T-cell Activity and Tumor Eradication. Cancer Immunol Res. 2016; 4(2): 95-100. http://doi.org/10.1158/2326-6066.CIR-14-0126.
44. Karyampudi L, Lamichhane P, Scheid AD et al. Accumulation of memory precursor CD8 T cells in regressing tumors following combination therapy with vaccine and anti-PD-1 antibody. Cancer Res. 2014; 74(11): 2974-85. http://doi.org/10.1158/0008-5472.CAN-13-2564.
45. Morse MA, Gwin WR 3rd, Mitchell DA. Vaccine Therapies for Cancer: Then and Now. Target Oncol. 2021; 16(2): 121-52. http://doi.org/10.1007/s11523-020-00788-w .
46. Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019; 4: 7. http://doi.org/10.1038/s41541-019-0103-y.
47. Zhang Y, Ma JA, Zhang HX et al. Cancer vaccines: Targeting KRAS-driven cancers. Expert Rev Vaccines. 2020; 19(2): 163-73. http://doi.org/10.1080/14760584.2020.1733420.

Most read articles by the same author(s)