The role of α-lipoic acid, uridine monophosphate and group B vitamins in the function of central and peripheral nervous system Review article

Main Article Content

Mateusz Widera
Tomasz Berkowicz

Abstract

The purpose of this article is to provide an update on the clinical knowledge and management of neurologic diseases related to key nutrient deficiencies: group B vitamins, α-lipoic acid, uridine monophosphate, vitamin E and selenium. Optimal functioning of the central and peripheral nervous systems is dependent on a constant supply of aforementioned nutrients. The article discusses the neurological symptoms of the most common deficiency diseases.

Article Details

How to Cite
Widera, M., & Berkowicz , T. (2019). The role of α-lipoic acid, uridine monophosphate and group B vitamins in the function of central and peripheral nervous system. Medycyna Faktow (J EBM), 12(3(44), 282-289. https://doi.org/10.24292/01.MF.0319.17
Section
Articles

References

1. Smith A.R., Shenvi S.V., Widlansky M. et al.: Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr. Med. Chem. 2004; 11: 1135-1146.
2. Scott B.C., Aruoma O.I., Evans P.J. et al.: Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation. Free Radic. Res. 1994; 20: 119-133.
3. Devasagayam T.P., Subramanian M., Pradhan D.S., Sies H.: Prevention of singlet oxygen-induced DNA damage by lipoate. Chem. Biol. Interact. 1993; 86: 79-92.
4. Cenini G., Lloret A., Cascella R.: Oxidative Stress in Neurodegenerative Diseases: From a Mitochondrial Point of View. Oxidative Medicine and Cellular Longevity 2019.
5. Singh A., Kukreti R., Saso L., Kukreti S.. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019; 24(8). pii: E1583. doi: 10.3390/molecules24081583.
6. Liu J., Head E., Gharib A.M. et al.: Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha – lipoic acid. Proc. Natl. Acad. Sci. U S A 2002; 99: 2356-2361.
7. Suh J.H., Shenvi S.V., Dixon B.M. et al.: Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc. Natl. Acad. Sci. U S A 2004; 101: 3381-3386.
8. Lodge J.K., Traber M.G., Packer L.: Thiol chelation of Cu2+ by dihydrolipoic acid prevents human low density lipoprotein peroxidation. Free Radic Biol. Med. 1998; 25: 287-297.
9. Anuradha B., Varalakshmi P.: Protective role of DL-alpha-lipoic acid against mercury-induced neural lipid peroxidation. Pharmacol. Res. 1999; 39: 67-80.
10. Han D., Sen C.K., Roy S. et al.: Protection against glutamate-induced cytotoxicity in C6 glial cells by thiol antioxidants. Am. J. Physiol. 1997; 273: R1771-1778.
11. Streeper R.S., Henriksen E.J., Jacob S. et al.: Differential effects of lipoic acid stereoisomers on glucose metabolism in insulin-resistant skeletal muscle. Am. J. Physiol. 1997; 273: E185-191.
12. Hughes V.A., Fiatarone M.A., Fielding R.A. et al.: Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. Am. J. Physiol. 1993; 264: E855-E862.
13. Jacob S., Streeper R.S., Fogt D.L. et al.: The antioxidant alpha-lipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant rat skeletal muscle. Diabetes 1996; 45: 1024-1029.
14. Jacob S., Henriksen E.J., Schiemann A.L. et al.: Enhancement of glucose disposal in patients with type 2 diabetes by alpha-lipoic acid. Arzneimittelforschung 1995; 45: 872-874.
15. Konrad T., Vicini P., Kusterer K. et al.: alpha-lipoic acid treatment decreases serum lactate and pyruvate concentrations and improves glucose effectiveness in lean and obese patients with type 2 diabetes. Diabetes Care 1999; 22: 280-287.
16. Marracci G.H., Marquardt W.E., Strehlow A. et al.: Lipoic acid downmodulates CD4 from human T lymphocytes by dissociation of p56(Lck). Biochem. Biophys. Res. Commun. 2006; 344: 963-971.
17. Schillace R.V., Pisenti N., Pattamanuch N. et al.: Lipoic acid stimulates cAMP production in T lymphocytes and NK cells. Biochem. Biophys. Res. Commun. 2007; 354: 259-264.
18. Larghero P., Vene R., Minghelli S. et al.: Biological assays and genomic analysis reveal lipoic acid modulation of endothelial cell behavior and gene expression. Carcinogenesis 2007; 28: 1008-1020.
19. He Y., Sanderson I.R., Walker W.A.: Uptake, transport and metabolism of exogenous nucleo-sides in intestinal epithelial cell cultures. J. Nutr. 1994; 124: 1942-1949.
20. Ikeda U., Ito T., Shimada K.: Interleukin-6 and acute coronary syndrome. Clin. Cardiol. 2001; 24: 701-704.
21. Battisti E., Albanese A., Guerra L.: Alpha lipoic acid and superoxide dismutase in the treatment of chronic low back pain. Eur. J. Phys. Rehabil. Med. 2013; 49: 1-6.
22. Monroy Guízar E.A., García Benavides L., Ambriz Plascencia A.R. et al.: Effect of Alpha-Lipoic Acid on Clinical and Neurophysiologic Recovery of Carpal Tunnel Syndrome: A Double-Blind, Randomized Clinical Trial. J. Med. Food Vol. 2018; 21(5).
23. Connolly G.P., Duley J.A.: Uridine and its nucleotides: biological actions, therapeutic potentials. Trends Pharmacol. Sci. 1999; 20: 218-225.
24. Kondo D.G., Sung Y.H., Hellem T.L. et al.: Open-Label Uridine for Treatment of Depressed Adolescents with Bipolar Disorder. J. Child Adolesc. Psychopharmacol. 2011; 21(2): 171-175.
25. Carlezon W.A., Mague S.D., Parow A.M. et al.: Antidepressant-like effects of uridine and omega-3 fatty acids are potentiated by combined treatment in rats. Biol. Psychiatry 2005; 57(4): 343-350.
26. Grimble G.K.: Dietary nucleotides and gut mucosal defence. Gut 1994; 35: S46-51.
27. He Y., Sanderson I. R., Walker W.A.: Uptake, transport and metabolism of exogenous nucleo-sides in intestinal epithelial cell cultures. J. Nutr. 1994; 124: 1942-1949.
28. Cansev M.: Uridine and cytidine in the brain: Their transport and utilization. Brain Res. Rev. 2006; 52: 389-339.
29. Cornford E.M., Oldendorf W.H.: Independent blood-brain barrier transport systems for nucleic acid precursors. Biochim. Biophys. Acta 1975; 394: 211-219.
30. van Groeningen C.J., Peters G.J., Pinedo H.M.: Reversal of 5-fluorouracil-induced toxicity by oral administration of uridine. Ann. Oncol. 1993; 4: 317-320.
31. Page T., Yu A., Fontanesi J., Nyhan W.L.: Developmental disorder associated with increased cellular nucleotidase activity. Proc. Natl. Acad. Sci. U S A. 1997; 94(21): 11601-1106.
32. van der Beek E.M., Kamphuis P.: The potential role of nutritional components in the management of Alzheimer’s Disease. Eur. J. Pharmacol. 2008; 585: 197-207.
33. Cansev M., Ulus I.H., Wang L. et al.: Restorative effects of uridine plus docosahexaenoic acid in a rat model of Parkinson’s disease. Neurosci. Res. 2008; 62: 206-209.
34. Wurtman R.J., Cansev M., Ulus I.H.: Synapse formation is enhanced by oral administration of uridine and DHA, the circulating precursors of brain phosphatides. J. Nutr. Health Aging 2009; 13: 189-197.
35. Kamphuis P.J., Wurtman R.J.: Nutrition and Alzheimer’s disease: pre-clinical concepts. Eur. J. Neurol. 2009; 16: 12-18.
36. Myers C.S., Fisher H., Wagner G.C.: Uridine potentiates haloperidol’s disruption of conditioned avoidance responding. Brain Res. 1994; 651: 194-198.
37. Agnati L.F., Fuxe K., Ruggeri M.: Effects of chronic treatment with uridine on striatal dopamine release and dopamine related behaviours in the absence or the presence of chronic treatment with haloperidol. Neurochem. Int. 1989; 15: 107-113.
38. Moszczyński P., Pyć R.: Biochemia witamin. Część I. Witaminy grupy B i koenzymy. PWN, Warszawa–Łódź 1998; 11-201.
39. Ziemlański Ś., Bułhak-Jachymczyk B., Niedźwiecka-Kącik D. et al.: Normy żywienia człowieka. Fizjologiczne podstawy. PZWL, Warszawa 2001: 211-280.
40. Gubler C.J.L: Thiamine. W: Handbook of vitamins (ed. Machlin L.J.). New York 1984.
41. Murray R.K., Granner D.K., Mayes P.A. et al.: Biochemia Harpera. PZWL, Warszawa 1994: 693-708.
42. Depeint F., Bruce W.R., Shangari N. et al.: Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism. Chem. Biol. Interact. 2006; 163: 94-112.
43. Coimbra C.G., Junquiera V.B.C.: Hight doses of riboflavin and the elimination of dietary red meat promote the recovery of some motor functions in Parcinsons disease patients. Braz. J. Med. Biol. Res. 2003; 36: 1409-1417.
44. Atamna H.: Heme iron and the mitochondrial decay of ageing. Ageing Res. Rev. 2003; 3: 303-313.
45. Stepuro A.I., Piletskaya T.P., Stepuro I.I. et al.: Thiamin oxidative transformation catalyzed by copper ions and ascorbic acid. Biochem. Russia 1997; 62: 1409-1414.
46. Chawla J., Kvarnberg D.: Hydrosoluble vitamins. Handb. Clin. Neurol. 2014; 120: 891Y914. DOI: 10.1016/B978-0-7020-4087-0.00059-0.
47. Bourgeois C., Cervantes-Laurean D., Moss J.: Niacin. W: Shils M.E., Shike M., Ross A.C. et al. (eds): Modern nutrition in health and disease. 10th ed. Baltimore, MD: Lippincott Williams & Wilkins 2006: 442-451.
48. Sung S., Yao Y., Uryu K. et al.: Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J. 2004; 18(2): 323-325.
49. Mangialasche F., Solomon A., Kåreholt I. et al.: Serum levels of vitamin E forms and risk of cognitive impairment in a Finnish cohort of older adults. Exp. Gerontol. 2013; 48(12): 1428-1435.
50. Dominiak A., Wilkaniec A., Wroczyński P., Adamczyk A.: Selenium in the Therapy of Neurological Diseases. Where is it Going? Curr. Neuropharmacol. 2016; 14(3): 282-229.