Suplementacja podczas pandemii COVID-19 Artykuł przeglądowy

##plugins.themes.bootstrap3.article.main##

Joanna Michalina Jurek

Abstrakt

Sposób odżywiania ma znaczący wpływ na zachowanie ogólnego zdrowia oraz sprawnie funkcjonującego układu odpornościowego. Z tego względu odpowiednio zbilansowana, zróżnicowana pod kątem jakościowym dieta, będąca źródłem wysokiej jakości białka, wielonienasyconych kwasów tłuszczowych (omega-3), witamin (B12, B6, C, E, A) oraz składników mineralnych (cynk i selen), może się przyczynić do poprawy odporności, która jest niezbędna w czasie pandemii COVID-19. Również włączenie funkcjonalnej żywności, będącej źródłem błonnika pokarmowego oraz żywych kultur bakterii probiotycznych, może się przyczynić do łagodzenia objawów choroby, w tym również zmniejszenia stanów zapalnych. Niemniej jednak składniki te powinny być traktowane ze szczególną uwagą ze względu na to, że badania naukowe w tym obszarze są ograniczone.

Pobrania

Dane pobrania nie są jeszcze dostepne

##plugins.themes.bootstrap3.article.details##

Jak cytować
Jurek , J. M. (2020). Suplementacja podczas pandemii COVID-19 . Kardiologia W Praktyce, 14(3-4), 51-59. Pobrano z https://www.journalsmededu.pl/index.php/kwp/article/view/1168
Dział
Z pogranicza kardiologii

Bibliografia

1. Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020; 12(1): 236.
2. Aman F, Masood S. How Nutrition can help to fight against COVID-19 Pandemic. Pak J Med Sci. 2020; 36(COVID19-S4): S121-S3.
3. Calder PC, Kew S. The immune system: a target for functional foods? Br J Nutr. 2002; 88(suppl 2): S165-77.
4. Butler MJ, Barrientosa RM. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav Immun. 2020; 87: 53-4.
5. Green WD, Beck MA. Obesity impairs the adaptive immune response to influenza virus. Ann Am Thorac Soc. 2017; 14: S406-S9.
6. Venter C, Eyerich S, Sarin T et al. Nutrition and the Immune System: A Complicated Tango. Nutrients. 2020; 12(3): E818.
7. Iddir M, Brito A, Dingeo G et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients. 2020; 12(6): 1562.
8. Caccialanza R, Laviano A, Lobascio F et al. Early nutritional supplementation in non-critically ill patients hospitalized for the 2019 novel coronavirus disease (COVID-19): Rationale and feasibility of a shared pragmatic protocol. Nutrition. 2020; 74: 110835.
9. Li P, Yin YL, Li D et al. Amino acids and immune function. Br J Nutr. 2007; 98(2): 237-52.
10. Brugliera L, Spina A, Castellazzi P et al. Nutritional management of COVID-19 patients in a rehabilitation unit. Eur J Clin Nutr. 2020; 74(6): 860-3.
11. Calder PC, Carr AC, Gombart AF et al. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients. 2020; 12(4): E1181.
12. Das UN. Can Bioactive Lipids Inactivate Coronavirus (COVID-19)? Arch Med Res. 2020; 51(3): 282-6.
13. Panigrahy D, Gilligan MM, Huang S et al. Inflammation resolution: a dual-pronged approach to averting cytokine storms in COVID-19? Cancer Metastasis Rev. 2020; 39(2): 337-40.
14. Hao Q, Dong BR, Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev. 2015; (2): CD006895.
15. Morais AHA, Passos TS, Maciel BLL et al. Can Probiotics and Diet Promote Beneficial Immune Modulation and Purine Control in Coronavirus Infection? Nutrients. 2020; 12(6): 1737.
16. Xu K, Cai H, Shen Y et al. Management of corona virus disease-19 (COVID-19): the Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020; 49(1): 147-57. (In Chinese).
17. Azagra-Boronat I, Massot-Cladera M, Knipping K et al. Strain-Specific Probiotic Properties of Bifidobacteria and Lactobacilli for the Prevention of Diarrhea Caused by Rotavirus in a Preclinical Model. Nutrients. 2020; 12(2): 498.
18. Park Y, Subar AF, Hollenbeck A et al. A. Dietary fiber intake and mortality in the NIH-AARP diet and health study. Arch Intern Med. 2011; 171: 1061-8.
19. Costabile A, Klinder A, Fava F et al. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: A double-blind, placebo-controlled, crossover study. Br J Nutr. 2008; 99: 110-20.
20. Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013; (1): CD000980.
21. Hunt C, Chakravorty NK, Annan G et al. The clinical effects of vitamin C supplementation in elderly hospitalised patients with acute respiratory infections. Int J Vitam Nutr Res. 1994; 64(3): 212-9.
22. Ran L, Zhao W, Wang J et al. Extra Dose of Vitamin C Based on a Daily Supplementation Shortens the Common Cold: A Meta-Analysis of 9 Randomized Controlled Trials. Biomed Res Int. 2018; 4: 1-12.
23. Xu Z, Yang L, Zhang X et al. Discovery of Potential Flavonoid Inhibitors Against COVID-19 3CL Proteinase Based on Virtual Screening Strategy. Front Mol Biosci. 2020; 7: 556481.
24. Martineau AR, Jolliffe DA, Hooper RL et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ. 2017; 356: i6583.
25. Grant WB, Lahore H, McDonnell SL et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020; 12(4): E988.
26. Rhodes JM, Subramanian S, Laird E et al. Low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity. Aliment Pharmacol Ther. 2020; 51(12): 1434-37.
27. Raharusun P, Priambada S, Budiarti C et al. Patterns of COVID-19 Mortality and Vitamin D: An Indonesian Study. SSRN Electronic Journal. 2020.
28. D’Avolio A, Avataneo V, Manca A et al. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients. 2020; 12(5): 1359.
29. Ghani SMA, Goon JA, Azman N et al. Comparing the effects of vitamin E tocotrienol-rich fraction supplementation and alpha-tocopherol supplementation on gene expression in healthy older adults. Clinics (Sao Paulo) 2019; 74: e688.
30. De la Fuente M, Hernanz A, Guayerbas N et al. Vitamin E ingestion improves several immune functions in elderly men and women. Free Radic Res. 2008; 42(3): 272-80.
31. Meydani SN, Leka LS, Fine BC et al. Vitamin E and respiratory tract infections in elderly nursing home residents: A randomized controlled trial. JAMA. 2004; 292: 828-36.
32. Ivory K, Prieto E, Spinks C et al. Selenium Supplementation Has Beneficial and Detrimental Effects on Immunity to Influenza Vaccine in Older Adults. Clin Nutr. 2017; 36(2): 407-15.
33. Mahmoodpoor A, Hamishehkar H, Shadvar K et al. The Effect of Intravenous Selenium on Oxidative Stress in Critically Ill Patients with Acute Respiratory Distress Syndrome. Immunol Invest. 2019; 48(2): 147-59.
34. Lee YH, Lee SJ, Lee MK et al. Serum selenium levels in patients with respiratory diseases: a prospective observational study. J Thorac Dis. 2016; 8(8): 2068-78.
35. Zhang J, Taylor EW, Bennett K et al. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020; 111(6): 1297-9.
36. Jiang CX, Xu CD, Yang CQ. Therapeutic Effects of Zinc Supplement as Adjunctive Therapy in Infants and Young Children with Rotavirus Enteritis. Zhongguo Dang Dai Er Ke Za Zhi. 2016; 18(9): 826-30.
37. Acevedo-Murillo JA, García León ML, Firo-Reyes V et al. Zinc Supplementation Promotes a Th1 Response and Improves Clinical Symptoms in Fewer Hours in Children With Pneumonia Younger Than 5 Years Old. A Randomized Controlled Clinical Trial. Front Pediatr. 2019; 7: 431.
38. Mahyar A, Ayazi P, Ahmadi NK et al. Zinc Sulphate for Acute Bronchiolitis: A Double-Blind Placebo-Controlled Trial. Infez Med. 2016; 24(4): 331-6.
39. Derwand R, Scholz M. Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win today’s battle against COVID-19? Med Hypotheses. 2020; 142: 109815.
40. Shittu MO, Afolami OI. Improving the efficacy of Chloroquine and Hydroxychloroquine against SARS-CoV-2 may require Zinc additives – A better synergy for future COVID-19 clinical trials. Infez Med. 2020; 28(2): 192-7.